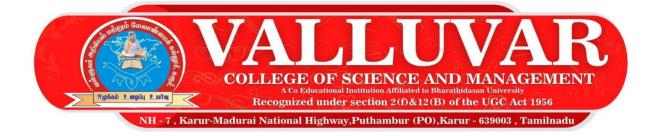
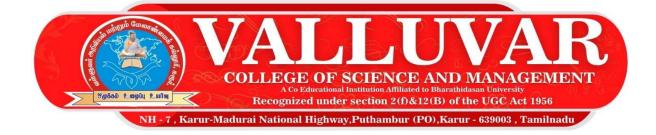
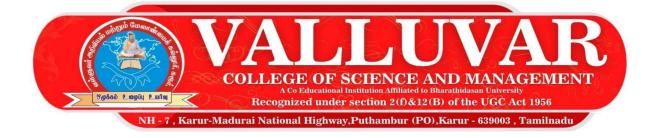


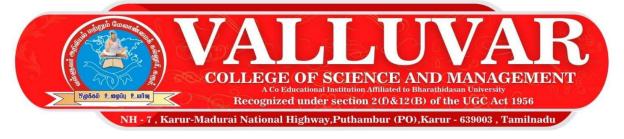
DEPARTMENT OF MATHEMATICS COURSE OUTCOMES OF UNDER GRADUATE PROGRAMMES (2016 – 2017 onwards)


Name of the Programme: B.Sc., Mathematics			Semester – I
Course Code	Name of the Course	Course Outcomes	
		CO 1	Discuss partial derivatives of higher derivatives and total differential coefficient.
		CO 2	Explain Jacobians method and understand the necessary and sufficient conditions.
	16SCCMM1 DIFFERENTIAL CALCULUS AND TRIGONOMETRY	CO 3	Derive polar coordinates and pedal equations and solve problems.
16SCCMM1		CO 4	Explain curvature and radius of curvature and problems.
		CO 5	Discuss sufficient conditions for envelope of the one parameter family of curves.
		CO 1	Compute Double and triple integral in Cartesian coordinates.
16SCCMM2	INTEGRAL CALCULUS	CO 2	Recall and relate beta and gamma function and their properties.
		CO 3	Application of double and triple integrals to area, volume and centroid.
		CO 4	Compute line integral surface and volume integral.
		CO 5	Solve Fourier series, Fourier expansions of periodic functions with period 2.


Name of the Programme: B.Sc., Mathematics Se			Semester – II
Course Code	Name of the Course		Course Outcomes
		CO 1	How to Solve first-order ordinary differential equations
		CO 2	How to Solve higher order differential equations
10000000	DIFFERENTIAL	CO 3	How to Solve Laplace Transforms
16SCCMM3	EQUATIONS AND LAPLACE TRANSFORMS	CO 4	How to Solve the Higher order differential equations using methods of variation of parameter.
		CO 5	How to Solve partial differential equations us in Lagrange's Method.
		CO 1	Gain knowledge about the regular geometrical figures and their properties.
	ANALYTICAL GEOMETRY (3D)	CO 2	Analyze condition of tangency and find the tangent plane to the sphere.
16SCCMM4		CO 3	Examine the condition for the general equation of the cone
		CO 4	Understand the concept of quadric cone and its properties
		CO 5	Acquire the basic knowledge of tangents and conicoid.


Name of the Programme: B.Sc., Mathematics			Semester – III
Course Code	Name of the Course	Course Outcomes	
		CO 1	To understood about bounded sequences, monotonic sequences
		CO 2	How to Solve Algebra of Limits
16SCCMM5	SEQUENCES AND SERIES	CO 3	To learned about Cauchy sequences and its applications
		CO 4	To understood and theorem and test of convergence using comparison test
		CO 5	How to Solve Cauchy's root test problems
16SCCMM6	CLASSICAL ALGEBRA AND THEORY OF NUMBERS CO 4 CO 5	CO 1	How to Solve Relation between roots & coefficients of Polynomial Equations
		CO 2	Understand the concept of Newton's theorem on the sum of the power of the roots
		CO 3	To learned about form of an equation whose roots are any power
		CO 4	How to Solve Geometric & Arithmetic means problems
		To understood about Theory of Numbers	

Name of the Programme: B.Sc., Mathematics		thematics	Semester – IV
Course Code	Name of the Course	Course Outcomes	
		CO 1	To understanding the basic knowledge of vector differentiation & vector integration
	VECTOR	CO 2	How to Solve the types of integral.
16SCCMM7	CALCULUS AND FOURIER SERIES	CO 3	How to solve vector differentiation & amp; integration problems
		CO 4	How to approach the Fourier Series
		CO 5	How to Solve the different types of series.
	LINEAR ALGEBRA -	CO 1	To understood a better of vector space
		CO 2	To know the concepts of base and dimension of vector space
16SCCMM8		CO 3	How to express vector spaces in different dimensions.
		CO 4	How to explain some functions defined between vector spaces
		CO 5	How to find kernel and image spaces of a linear transformation



Name of the Prog Course Code	gramme: B.Sc., Mathe Name of the Course	ematics	Semester – V Course Outcomes
	NUMERICAL METHODS WITH -	CO 1	To learned basic knowledge of the exciting world of programming to the students through numerical methods
		CO 2	Students will have a working knowledge of techniques of MATLAB programming
16SCCMM9	MATLAB	CO 3	How to solve numerical problems using MATLAB
	PROGRAMMING -	CO 4	To know the concepts of Linear and parabolic curves by the method of least squares principle
	-	CO 5	How to Solve Interpolation problems
		CO 1	Understand the real number system and countable concepts in real number system
	REAL ANALYSIS	CO 2	To Provide a Comprehensive idea about the real number system
16SCCMM10		CO 3	To understood the concepts of Continuity, Differentiation and Riemann Integrals
		CO 4	To Learn Rolle's Theorem and apply the Rolle's theorem concepts
		CO 5	Students will be able to Fundamental Theorem of Calculus
	STATICS	CO 1	To understood the Condition of equilibrium
		CO 2	To provide the basic knowledge of equilibrium of a particle
		CO 3	To develop a working knowledge to handle practical problems
16SCCMM11		CO 4	Students will have a working knowledge of Equilibrium of a particle on a rough inclined plane
		CO 5	To developed a working knowledge to handl practical problems on Equilibrium of strings
16SMBEMM1:1	OPERATIONS RESEARCH	CO 1	To Understood the various techniques of Operations Research
		CO 2	How to Solve Linear programming problem
		CO 3	How to Solve simplex method problem
		CO 4	How to Solve Transportation problem
		CO 5	To make the students solve real life problem in Business and Management

Course Code	Name of the Course		Course Outcomes
16SCCMM12	ABSTRACT ALGEBRA	CO 1	To understood the concept of Algebra from the basic set theory and Functions, etc.
		CO 2	Students will be able to construct substructures.
		CO 3	To learned the concept of Group theory and Rings.
		CO 4	Students will have a working knowledge of mathematical concepts of definition of a group, order of a finite group and order of an element.
		CO 5	Students will be introduced to and have knowledge of many mathematical concepts studied in abstract mathematics such as permutation groups, factor groups and Abelian groups.
	COMPLEX ANALYSIS	CO 1	To Understood the functions of complex variables, continuity and differentiation of complex variable functions, C – R equation of analytic functions.
		CO 2	To Learned about elementary transformation concepts in complex variable
16SCCMM13		CO 3	To Learned about complex Integral function with Cauchy's Theorem, power series expansions of Taylor's and Laurant's series
		CO 4	To Understood the singularity concepts and residues, solving definite integrals using the residue concepts
		CO 5	How to describe conformal mappings between various plane regions. Present the central ideas in the solution of Dirichlets problem
16SCCMM14	DYNAMICS	CO 1	To learned basic knowledge of the behaviour of objects in motion
		CO 2	To developed a working knowledge to hand practical problems
		CO 3	How to solve mechanics problems in one dimension that involves one or more of the forces of gravity, friction and air resistance.
		CO 4	How to understand and use basic terms for the description of the motion of particles, vector functions and the fundamental laws of Newtonian mechanics

CO 5	How to solve problems relating to the motion of a projectile in the absence of air resistance.
------	--

16SMBEMM2:1	GRAPH THEORY	CO 1	To learned about the notion of graph theory and its applications
		CO 2	To learned the techniques of combinatorics in Graph Theory
		CO 3	The students will be able to apply principles and concepts of graph theory in practical situations
		CO 4	How to apply graph theory-based tools in solving practical problems
		CO 5	To understood and apply the fundamental concepts in graph theory
	ASTRONOMY	CO 1	To understood the exciting world of astronomy to the students
		CO 2	To know the study spherical trigonometry in the field of astronomy.
16SMBEMM3:1		CO 3	To understood the movements of the celestial objects.
		CO 4	Students will be able to identify, classify and compare the objects in the Universe
		CO 5	The aim of teaching is to understand astrophysical processes and systems, ranging from our own sun to stars, galaxies and the whole universe